
Chat Metrics Manual — Interpreting Performance
& Quality Signals
This guide explains every metric surfaced by the Chat • Web Search + Memory with Metrics page and how
to interpret them when running your bot in General, RAG, or Web Search modes. It’s written for a
semi‑technical audience—no ML background required.

1) Where metrics come from

Your server (rag_mem_server.js) returns a rich response that includes a metrics block, plus helpful
context like sources, mode, memory hits, and a running summary. The front end reads those fields and
displays them alongside each assistant reply.

At a high level: - Server measures: end‑to‑end request time on the server, time inside the LLM call(s),
summary generation time, token usage. - Client measures: wall‑clock time the browser spent waiting for
the response (shown in Perf Runner table as Client ms).

2) Quick map of fields

Section Field What it is Why it matters

Reply reply
Final assistant text
returned by the model.

Sanity check: if blank or very
short, investigate caps, tool calls,
or errors.

Sources sources[]
Top citations (RAG docs or
Web results).

Trust & traceability; compare
which pipeline produced the
answer.

Mode mode
One of general , rag ,
or web .

Latency and resource use differ
by mode; set expectations.

Memory
memoryUsed /
memoryTop[]

Count and top matches
from conversation
memory.

Confirms continuity; too many/
too old hits can distract.

Summary runningSummary
Rolling bullet summary of
the session.

Useful for long chats and
coreference; costs extra latency.

Metrics metrics{...}
Latency, throughput, and
token use (see below).

Core signals for sizing hardware,
tuning tokens, and SLAs.

1

3) Metrics (server‑side) — definitions & formulas

3.1 Latency & timing

metrics.apiDurationMs

Definition: Milliseconds spent in the main LLM completion.
Why: This isolates model latency from other work (RAG retrieval, JSON marshalling, etc.). Track the
impact of model choice and token sizes here.

metrics.summaryApiMs

Definition: Milliseconds spent generating/updating the running summary (best‑effort; may be null).
Why: Summaries improve long‑context chats but add cost/latency. Toggle this on/off at the server
level to understand trade‑offs.

metrics.totalDurationMs

Definition: Full server time from request receipt to response JSON.
Why: Closest to what users feel (minus network). Includes retrieval, search, memory lookups, the
main LLM call, and optional summary.

Typical relationships: totalDurationMs ≥ apiDurationMs . If totalDurationMs is
much larger, your bottleneck may be web search latency, file I/O, or embeddings.

3.2 Token usage & throughput

metrics.usage (if provided by the model)
prompt_tokens : tokens in the prompt (system, user, RAG context, memory).
completion_tokens : tokens generated by the model.
total_tokens = prompt_tokens + completion_tokens .

Why: Tokens directly affect cost and latency. Large prompt tokens usually dominate; reduce context size or
chunk count if needed.

metrics.tokensPerSec

Definition: total_tokens / (apiDurationMs / 1000) when usage is available.
Why: A normalized throughput measure to compare models/hardware even as token sizes vary.

metrics.charsPerSec

Definition: reply.length / (apiDurationMs / 1000) ; a fallback throughput proxy when token
usage is missing.
Why: Quick sense of output speed; less precise than tokens but universally available.

3.3 Model identifier

metrics.model

Definition: The model that actually produced the reply (may reflect server fallback).
Why: Crucial for A/B tests and when diagnosing changes in latency or output quality.

•

•

•

•
•
•
•

•

•

•

2

4) Context fields — why they’re logged

sources (RAG or Web Search)
Why: Improves trust and debuggability. If answers look off, check the top sources—maybe the wrong
doc was retrieved or the search query was ambiguous.

mode

Why: Expected latency differs:

general → fastest (no retrieval/search)
rag → adds embedding similarity search + longer prompt

web → adds outbound HTTP calls and longer prompts

memoryUsed / memoryTop[]
Why: Verifies if conversation context is being reused. Low/zero hits across turns may mean your
memory threshold is too strict or the sessionId changed.

runningSummary

Why: Helps the assistant keep track of goals, constraints, and entities in long chats. If the summary
lags behind, consider turning it off for latency tests.

5) Interpreting the numbers — practical guidance

5.1 Establish baselines

General mode with a short prompt (e.g., “Say hi”).
Expect very low apiDurationMs and totalDurationMs . Use this to benchmark your
network+server overhead.
RAG mode on a known doc.
Expect totalDurationMs to increase due to retrieval and longer prompts. If increases are
extreme, tune topK , minScore , or chunk sizes.
Web mode with a stable query.
Expect higher totalDurationMs due to outbound HTTP latency; measure variance across time of
day and provider (SerpAPI vs. Bing).

5.2 Red flags & what to try

reply empty or very short
Check token caps (server env MAX_COMPLETION_TOKENS , request maxCompletionTokens).
Ensure tool-only responses are disabled if your model tends to prefer tools:
DISABLE_TOOL_CALLS=1 (server) for testing.

•

•

•
•

•

•

•

1.

2.

3.

•
•
•

3

Watch server log for messages like “Empty reply from model… finish_reason: length”. Raise caps or
shorten prompt.

totalDurationMs ≫ apiDurationMs

Likely I/O bound. Profile web search time, indexing, or disk reads. Consider caching search results
and embeddings.

Huge prompt_tokens

Trim RAG context (topK), lower chunk size, or introduce a ranker that selects fewer/better
passages.

Avoid dumping entire summaries or long prior turns; summarize aggressively.

Low tokensPerSec vs expectations

Check if temperature or model changed. Some models stream/generate slower.
Ensure your token cap isn’t throttling output mid-sentence.

5.3 What “good” looks like (rules of thumb)

These are broad ballparks; real numbers depend on model/hardware.

General: apiDurationMs < 600 ms for short prompts; totalDurationMs close to
apiDurationMs .

RAG: Add 100–400 ms for retrieval (in‑memory). Prompt tokens may jump x2–x10.
Web: Add 300–1500 ms for search (network). High variance is normal; use caching in production.

6) Perf Runner — batch testing

The Perf Runner calls your /perf endpoint with a configurable count, concurrency, and delay. It reports
per‑run client wall time and the aggregated summary.

Use it to: - Validate that higher concurrency doesn’t starve the GPU/CPU.
- Compare models with the same prompt and caps.
- Spot outliers: track p50/p90/p99 latencies across runs.

Tip: keep temperature=0–0.2 during perf tests so variability comes mainly from infra, not
sampling.

7) Tuning checklist (latency vs. quality)

Cap and compress

•

•

•

•

•

•

•

•
•

•

•
•

1.

4

Reduce topK or prefer shorter chunks (sentence‑aware chunking already helps).

Summarize previous turns into a short running summary; don’t paste full history.

Throttle optional work

Disable summary on hot paths if not needed for that flow.

Cache search results briefly to avoid duplicate HTTP calls.

Prevent tool‑only stalls

For some models, set DISABLE_TOOL_CALLS=1 during perf to force pure text outputs.

Right‑size token caps

Start with server env MAX_COMPLETION_TOKENS (e.g., 1500–3000) and override per request for
long answers.

If you see finish_reason: length , increase the cap or reduce prompt size.

Concurrency

Increase worker count gradually while watching p95 latency and error rates.
Avoid saturating your CPU with embeddings; batch (your server already batches at 64).

8) Troubleshooting FAQ

Q: Why do I see references but no text?
A: The model likely produced tool calls or hit a token cap. For testing, set DISABLE_TOOL_CALLS=1 and
raise MAX_COMPLETION_TOKENS . Also verify the server logs—empty replies are logged with the first
choice metadata.

Q: Tokens aren’t showing in metrics.usage .
A: Some model families omit usage. Fall back to charsPerSec and keep reply.length as a crude size
signal.

Q: Web search feels slow.
A: Measure the external call time and enable caching. You can also reduce the number of results included in
the prompt.

Q: Memory hits seem irrelevant.
A: Lower memTopK or raise the threshold. Check timestamps in memoryTop —older hits may be decayed
less in your current config.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.
14.

5

9) Field reference (copy/paste)

{

"reply": "string",

"sources": [{ "title": "string", "url": "string", "snippet": "string" }],

"mode": "general|rag|web",

"sessionId": "string",

"memoryUsed": 0,

"memoryTop": [{ "id": "string", "ts": 0, "score": 0.0 }],

"runningSummary": "string",

"metrics": {

"model": "string",

"apiDurationMs": 0,

"summaryApiMs": 0,

"totalDurationMs": 0,

"usage": { "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0 },

"chars": 0,

"tokensPerSec": 0.0,

"charsPerSec": 0.0

}

}

10) Suggested thresholds to watch (starting points)

p95 totalDurationMs
General: < 1500 ms
RAG: < 2500 ms

Web: < 4000 ms (without caching)

tokensPerSec

Keep an eye on drops >30% between builds or model versions.

prompt_tokens

Alert if >8–12k persistently (risk of context overflow and high cost).

Adapt these to your hardware and SLAs.

•
•
•

•

•

•

•

•

6

Final tip

For clean apples‑to‑apples performance comparisons, lock down: model, temperature, token caps, and
prompt length. Then vary one thing at a time (e.g., RAG topK or web search provider). Record
apiDurationMs , totalDurationMs , and tokens—these three together explain most latency and cost

swings.

7

	Chat Metrics Manual — Interpreting Performance & Quality Signals
	1) Where metrics come from
	2) Quick map of fields
	3) Metrics (server‑side) — definitions & formulas
	3.1 Latency & timing
	3.2 Token usage & throughput
	3.3 Model identifier

	4) Context fields — why they’re logged
	5) Interpreting the numbers — practical guidance
	5.1 Establish baselines
	5.2 Red flags & what to try
	5.3 What “good” looks like (rules of thumb)

	6) Perf Runner — batch testing
	7) Tuning checklist (latency vs. quality)
	8) Troubleshooting FAQ
	9) Field reference (copy/paste)
	10) Suggested thresholds to watch (starting points)
	Final tip

